

All Pots are 100K Lin Diode is 1N270 Volume 1 to ground Volume 2 to output Fuzz, Verified, Vero

Sola Sound Tonebender MkIII - 3 Knob

IvIark - http://tagboardeffects.blogspot.com/

60-70 hfe for Q1 and Q2, and 110-120 hfe for Q3.

PNP germanium transistors

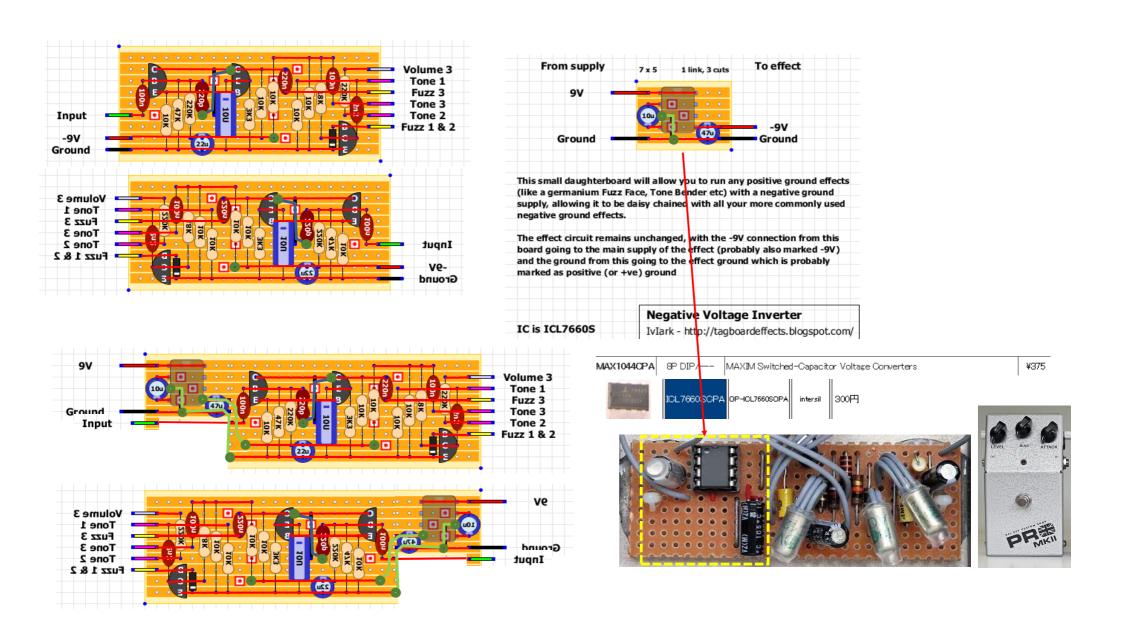
OC81's or similar

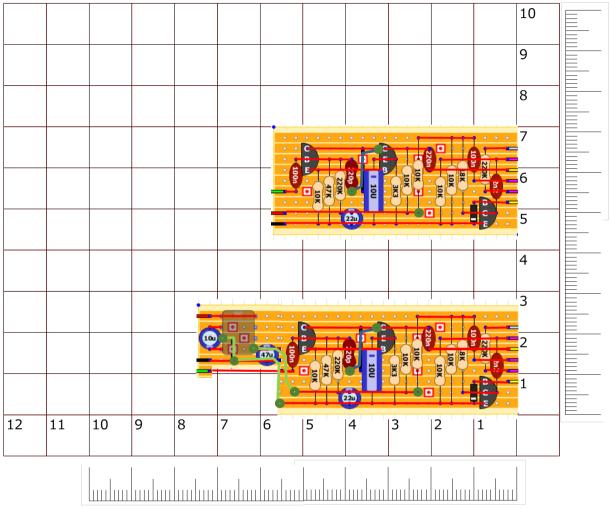
OC81D PNP ゲルマニウム DSI ブラックロケットケース レブリカ生産品

¥690

HFEは80、90、100前後です。

定番の値は70、70、100くらいなんでしょうけど

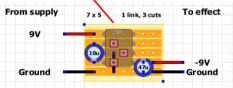

トランジスタは、国産PNPゲルマニウム・トランジスタを使用しています。


Q1:日立 2SA353 hFE:48(64) 真の増幅率(リーク電流を差し引いた値)、()内はテスター測定値

Q2:東芝 2SB415 hFE:70(102)、

Q3:東芝 2SB415 hFE:50(74)。

(夏に測定(室温27度)した時と、10~15ほど増幅率が下がっています。)



41pics=10mm

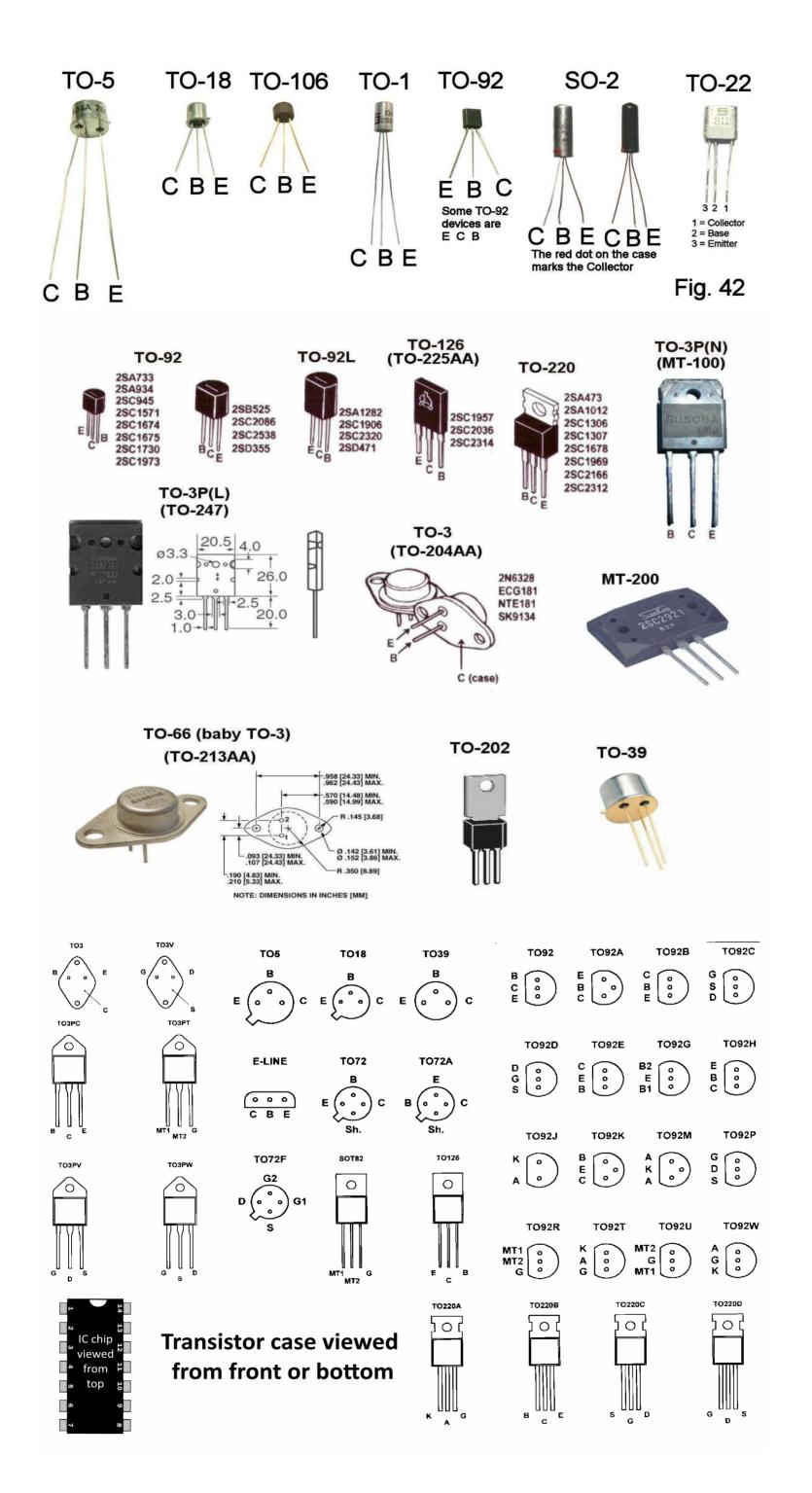
Actual size(実寸大)

This small daughterboard will allow you to run any positive ground effects (like a germanium Fuzz Face, Tone Bender etc) with a negative ground supply, allowing it to be daisy chained with all your more commonly used negative ground effects.

The effect circuit remains unchanged, with the -9V connection from this board going to the main supply of the effect (probably also marked -9V) and the ground from this going to the effect ground which is probably marked as positive (or +ve) ground

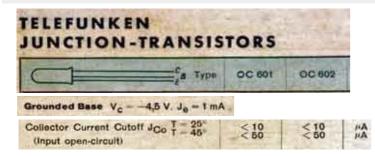
Negative Voltage Inverter IC is ICL7660S IvIark - http://tagboardeffects.blogspot.com/

Del Rey Custom Shop Pro MkIIは、9V電池、またはスタンダードなセンター マイナスDC9Vアダプターで駆動します。ネガティブグラウンドのため、多く のスタンダーなエフェクターと同時にデイジーチェーンで接続することも出 来ます。


使用しているトランジスタはオリジナルトーンベンダーと同じPNPゲルマニ ウムトランジスタですが、内部で入力された電源を切替えることでこの動作 を実現しました。基板上に、オリジナルモデルには無いICチップがあります が、このチップはそのための回路のもので、音には影響しません。シグナ ル周りの回路は、オリジナルユニットを再現しています

Pro MkIIにはゲルマニウムトランジスタが搭載されています。ゲルマニウム トランジスタは音楽的でリッチなハーモニクスを持つサウンドを作りますが、 温度変化に弱く、特に低温では動作が安定せず、本来のポテンシャルを 発揮できない場合があります。華氏70度(21.1℃)以上の、適度な温度で の動作が最高のパフォーマンスを発揮します。

intersil 300円


hFEとは直流電流増幅率の事です。

ベース電流とコレクタ電流の比の事です。

因みにhfeと"f"と"e"を小文字にすると交流電流増幅率になります。

hfe = Ic/IB Ic=コレクタ電流 IB=ベース電流

例えば、IB=10μA、IC=1.60mAの時、hFE=1.60/(10/1000)=160 になります。

OC 57 OC 58 OC 59 für Vorstufen in Hörgeräten	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{lll} -U_{CE} & = \max . & 3 \text{ V} \\ -u_{CEM} & = \max . & 7 \text{ V} \\ -I_{C} & = \max . & 5 \text{ mA} \\ -i_{CM} & = \max . & 10 \text{ mA} \\ \end{array} $
OC 60 für Endstufen in Hörgeräten	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	K ≤ 1.5 ard/mW
OC 70 OC 71 für NF-, Gleichstrom- und Impulsverstärker		-U _{CE} = max. 30 V -U _{CEM} = max. 30 V bei +U _{BE} ≥ 0,5 V -U _{CB} = max. 32 V -U _{CBM} = max. 32 V -I _C = max. 10 mA -i _{CM} = max. 50 mA -I _B = max. 5 mA -i _{BM} = max. 20 mA ∂ _j = max. 75 °C
Тур	Kenndaten	Grenzdaten

oc602 (with hfe of 20 and 30)

Ic=	5.0 mA
Ib=	100.0 μA
hfe=	50.0
Ic=	5.0 mA
Ib=	120.0 μA
hfe=	41.7
Ic=	10.0 mA
Ib=	110.0 µA
hfe=	90.9
Ic=	10.0 mA
Ib=	150.0 μA
hfe=	66.7